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Abstract—Based on previous work for the problem of end-loaded cantilever beams with loading conditions
prescribed in terms of displacements rather than stresses, for the purpose of defining shear center location in
terms of influence coefficients, the present report uses the principles of minimum potential and complementary
energy for the establishment of upper and lower bounds for these influence coefficients. In applying the
complementary energy principle we modify an earlier procedure by not departing from a St. Venant stress
distribution and by using instead a stress approximation in which both shear and normal stress distributions are
determined through use of the variational equation. In doing this the problem is solved more simply than before,
for a more general class of cases.

INTRODUCTION

Recent considerations of the problem of the end-loaded cantilever beam, with the conditions of
loading prescribed in terms of displacements rather than in terms of stresses, have lead to
defining relations for shear center and twist center location in terms of influence coefficients, of
a particularly simple nature[1,2]. It was furthermore shown that approximate values of these
influence coefficients, leading to approximate expressions for shear and twist center coor-
dinates, could be obtained by using St. Venant-type torsional and flexural stress distributions in
a Rayleigh-Ritz sense in conjunction with the principle of minimum complementary energy[1].
In what follows we extend these results in several directions.

We begin by making explicit the distinction between expressions for shear and twist center
coordinates in terms of flexibility coefficients (which were previously considered) and in terms
of stiffness coefficients (where it is shown that for the case of principal centroidal coordinate
axes the final formulas are as simple as the formulas in terms of flexibility coefficients).

We supplement our earlier statement of a minimum complementary energy equation for the
case of prescribed rigid-body type in-plane end section displacements[1] by a statement of the
associated minimum potential energy equation. Furthermore, we consider, in addition to the
case of prescribed in-plane end displacements, conditions of loading in a somewhat uncon-
ventional fashion, specifiying the form but not the magnitude of these displacements at the
loaded end of the beam, and at the same time specifying the resultants but not the distribution
of in-plane stresses at this end. We find that it is a simple matter to state a minimum potential
energy equation in such a way as to apply to the latter case, but we leave open the question of
an appropriate miminum complementary energy equation.

We use minimum potential and complementary energy equation statements for the est-
ablishment of upper and lower bound relations for quadratic forms involving flexibility and
stiffness coefficients, respectively. We give both types of bounds for stiffness coefficients, but a
lower bound only for flexibility coeflicients, pending formulation of a minimum complementary
energy equation for the mixed displacement-stress boundary condition case described above.

In applying the principle of minimum potential energy for the approximate determination of
flexibility and stiffness coefficients we utilize displacement approximations which have pre-
viously been used for the analysis of the problems of torsion and flexure with end-section
restraint against warping[3-5]. We think that it has not previously been recognized that these
approximations may be utilized, beyond allowing assessments of the effect of end section
restraint, for the purpose of deducing bound relations for coefficients entering into the formulas
for shear and twist center coordinates.

In applying the principle of minimum complementary energy we significantly modify our
earlier procedure[1) by not departing from a St. Venant-type shear distribution. Instead we
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utilize an approximation in which the distributions of both shear and normal stress over the
cross section are determined through use of the variational equation. In so doing the problem is,
without special effort, solved for a more general class of cases than heretofore, in a manner
which is thought to represent a significant simplification of the earlier work.

Remarkably, the approximate results for flexibility and stiffness coefficients which are
obtained on the basis of making quite disimilar approximative assumptions in connection with
the use of the minimum potential energy equation and of the minimum complementary energy
equation lead to identical approximate expressions for the coordinates of the center of shear
and of twist, This, in conjunction with our upper and lower bound relations, leads to the
conclusion that our approximate results are in fact exact, in the limit of vanishing a/ L, where a
is a representative cross sectional width dimension and L is the axial length of the beam, with
the possibility left open to refine the analysis s0 as to account for the {generally small) effect of
finite values of a/L.

A FORMULATION OF THE PROBLEMS OF TORSION AND FLEXURE

We consider a body with boundaries defined by a cylindrical surface f(x, y)=0 and two
planes z = 0 and z = L. We designate displacements by ¥, v, w and stresses by o, 7y, etc. and
we assume that the normal three-dimensional homogeneous equations of linear elasticity hold.
We further assume that the boundary portion f = 0 is traction free and that the boundary portion
z =0 is fixed.

In regard to the boundary portion z = L we assume the absence of normal tractions, in
conjunction with a rigid body translation and rotation distribution of tangential displacements,
i.e. we stipulate the conditions

z=L; o,=0, u=U-y8, v=V+x0 N

We now observe that in writing eqn (1) we may, or we may not, stipulate additionally the
magnitudes of U, V, 8. If we do, as we have done earlier in conjunction with applications of
the principle of minimum complementary energy{l, 2], then eqn (1) is a complete statement
of loading conditions. If we do not and leave the magnitudes of U, V, & unspecified then we
must, in order to complete the statement of loading conditions, prescribe additionally the
magnitude of two transverse force components P, Q, and of an axial torque T, as follows

z=1L: f (e 7,048 = (P, Q), f (rX —1.y)dS=T. 2

In view of the linearity and homogeneity of the problem we have that P, Q and T will be
combinations of U, V and 6, and vice versa, in the form

P = KpyU + Kpy + Kpe®,

Q:KQUU*F.,.., T=KgU+...+Kra®, {3)
and

U= CypP + CUQQ + CyrT,

V=CuwpP+..., O=CgpP+....+CqrT, 4
with the Kpy, etc. being stiffness coefficients, the Cyp, etc. being flexibility coeflicients, and with
the expectation of symmetry for the matrix of the K’s as well as for the matrix of the C’s.

Having eqns (3) and (4) we obtain the coordinates of the center of twist, x1, yr,as the coordinates

x, y of that point in the end cross section for which 4 = v = 0 in eqn (1) while at the same time
P=Q=0,ie. in the form

yr = (Ul®)p-g-0, x1r==(VI®)p-g-0s 8)]

and we obtain the coordinates of the center of shear, xs, ys, as the coordinates of the point of
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intersection of the lines of action of the forces P, Q for the case 8 = 0, in conjunction with the
torque T being solely due to the forces P, Q, that is, upon setting in eqns (3) or (4)

8=0, T= st—-Pys. {6)

It turns out that with these defining relations the simpler form of the results appears through
use of the flexibility coefficients, namely

Cur Cer Cvr _Ceg @

= - 3 Xr= »
¥r Ceor Y= Cor X~ "Cor "7 Cor

with yr = ys and xr = x5 for the normal case of a symmetric C-matrix. The corresponding
relations in terms of the coefficients K in eqn (3) come out to be ratios of certain second order
minors of the third order determinant of the coefficient matrix in (3). It will be useful to note for
what follows that we have, on the basis of eqns (5) and (3),

yr=KevKoo = KovKee  _ KeuKoo ~ KovKre ®)
T~ KpuKov — KouKev' KpuKov — KouKpy

again with ys = yr and xs = xr in normal circumstances, and with the important special-case
formulas

Kpo Koo

y¥r= _k_;z;x Xr = KQV’ (9)

which result upon assuming that Kpy = Koy = 0.

MINIMUM COMPLEMENTARY AND POTENTIAL ENERGY EQUATIONS FOR THE
PROBLEMS OF TORSION AND FLEXURE
We now assume that the material of the beam is such that its stress-strain relations may be
written in the alternative forms

oy = JAld€, 74y = 3AI3YV.y,. .., (10a)
and
€ = 3Blaa,, vy =a8Blar,,... {10b)

We then have for the case of prescribed U= U, V=V, ®=8 as minimum complementary
energy condition the variational equation &I, = 0, where

13=~f BdSdz+ UP+ VQ+8T. (112)

In (11a) the stresses o, 7., etc. must satisfy the differential equations of equilibrium and all
stress boundary conditions, and the variational equation is equivalent to all strain displacement
relations and displacement boundary conditions. We have earlier considered the application of
this variational problem for the approximate determination of flexibility coefficients in con-
junction with stress distributions corresponding to the solutions of the St. Venant torsion and
flexure problem(1, 2).

For an alternate formulation of the problem, within the context of the principle of minimum
potential energy, which we have not considered previously, we now prescribe P =P, Q= Q,
T =T, in association with the end displacement distribution (1). We then have that the
appropriate form of the principle of minimum potential energy is the variational equation
8I; = () where

I¢=IfAdez-ﬁU~QV-f‘8. (11b)
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In (11b) the strains ¢, v,,, etc. are given in terms of displacement derivatives, the displacement
components #, v, w must vanish for z=0, and ¥, v must be as in eqn (1) for z= L, with no
restrictions imposed on U, V, . The variational problem as stated has as Euler equations the
differential equations of equilibrium in the interior and all conditions of prescribed stress on the
surface.

Having previously used the variational equation 81, = 0 for the determination of flexibility
coefficient approximations—without regard to the fact that the form of eqns (11a) and (3)
indicates that it would be more natural to use this relation for the determination of stiffness
coefficients—we have not previously used the relation 8I; = 0 which, it is apparent from (11b)
and (4), is a natural starting point for the approximate determination of flexibility coefficients.

Previous general considerations on upper and lower bound-determinations for influence
coefficients [6] indicate that the use of I, is associated with the possibility of determining lower
bounds for stiffness coefficients K and that the use of I, gives the possibility of determining
lower bounds for flexibility coefficients C.

Furthermore, we know that the use of a potential energy function I% defined by

1=5=”Ad5dz, (12)

with I% differing from I, by the stipulation that in it U = U, V = V, ® =8, will be involved in
the determination of upper bounds for stiffness coefficients.

In order to obtain upper bounds for flexibility coefficients we should have a counterpart I*
to I, as defined in (11a), with U, V, © replaced by P, Q, T, in such a way that the form of the
tangential end displacement distribution remains prescribed in accordance with eqn (1). We do
not, at this time, know the way in which to introduce these “partial” displacement boundary
conditions into the principle of minimum complementary energy. Because of this we do not
here establish the appropriate form of I* (which, if symmetry considerations were the principal
guides, ought to be given by — [{B dS dz).

UPPER AND LOWER BOUND RELATIONS FOR INFLUENCE COEFFICIENTS

Appropriate transformations of the functionals I, I, and I'%, as defined ineqns (11) and (12) lead
to the upper and lower bound relations

iss%(t}m VQ+8T)<1I4, (13)

—%(U}h vQ+eh =i, (14

with the missing Lh.s. of eqn (14) making it evident that it would be useful to have a functional I
as discussed at the end of the preceding section. In eqn (13) I, corresponds to the functional I,
in (11a), with any stresses &, ., etc. which satisfy equilibrium differential equations and stress
boundary conditions, and I*% corresponds to I% in (12), with any differentiable displacement
state 4, o, w which satisfies the stipulated displacement boundary conditions, with the same
rules connecting I; in (14) and I, in (11b).

In order to see that (13) and (14) represent bound relations for stiffness and ﬂ_exi_bility
coefficients respectively, we observe that 1% as well as [, will be quadratic forms in U, V and
6, which may be written as

1

5K %8’ (15a)

Kgul-p-}'ng&‘?‘l’”.'{‘

1

K%,UI?2+...+2

K5e®. (15b)

At the same time the quantity which is bounded from above and below in egqn (13) may be
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written, with the help of eqns (3), as
UP + VQ+OT = KpyU?+ (Kpy + Kou) UV +.. .+ Kre€? (16)t

where Kpy = Kyy, 12(Kpy + Kou) = Kpv = Kou = Ky, etc. We note that when V=8=0
eqns (13), (15) and (16) specialize to a previously stated result for the problem of fiexure, within
the framework of the theory of plane stress[7]. Analogously, setting U =0 and V =0 gives a
simple explicit result for the problem of twisting with end restraint against warping, which may
not have been stated previously.f We further note the evident simplifications which occur in the
above upon stipulating symmetry conditions which result in bound relations for quadratic forms
in two variables in place of the relations for the general three-variable case.

We next consider eqn (14), written in the form — [ < 1/2(UP + VQ + @T). In this, eqn (11b)
enables us to write with suitable coefficients C*,

—Lw%cﬁpﬁh C%ﬁé+...+%—c‘ﬁfz. (1.
At the same time, we have, through the use of (4), that
PU +QV+ TO = CypP?+(Cyo+ Cvp)PQ +...+ CarT?, (18)
with the obvious consequences that
Cip=Cup, Coo<Cvo CFr=Ceorn (19)

but with the determination of bounds for the coefficients Cyg + Cyp, etc. of the mixed terms,
and therewith of bounds for the coordinates of the centers of shear and of twist, depending
upon the establishment of a bound functional I'* for the Lh.s. of eqn (14).

APPROXIMATE DETERMINATION OF SHEAR AND TWIST CENTER LOCATION
THROUGH USE OF MINIMUM POTENTIAL ENERGY PRINCIPLE
Similar to what has been done in earlier work on problems of combined twisting and
bending of beams|[3-5] we begin by stipulating as approximations for components of displace-
ment

i=u(z)— y8(2), ©=0(z)+x8(2), (20)
W = w2} + xa(2) + yB(z) + ¢(x, y)A(z). 2n

In this ¢(x, y) is a function which is to be assumed suitably, with the various functions of z in
(20) and (21) to be determined by the variational procedure, with or without imposition of
additional constraint relations.

As regards stress-strain relations we here consider a material possessing a limiting type
orthotropy, in such a way that there is partial rigidity, with each cross section translating and
rotating as an entity.§ Our limiting-type stress-strain relations are three relations e, = ¢, = y,, =
0, in conjunction with three relations of the form

o= Eez’ Tez = GYyn, Tyz = G'sz- (22)
With (22) we have as expression for the strain energy function A in eqn (11}
2A = B + Gy, + Gy, 23)

tAfter the manuscript of this paper had been completed, a fetter by S. Nair informed the author of an independent and
nearly simultaneous detivation of the result expressed by egns (13), (15) and (16).

$The result for twisting without restraint against warping is contained in an early fundamental paper by Trefftz{8].

§This assumption is meaningful for sufficiently slender beams only, where its approximate validity depends on the
relative insignificance of the components of stress o, o}, 7, in comparison with the components a., 7., 7,
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where, on the basis of {20} and (21),

€= wotxa' +yB + A, (29)

Y= ta—y8+Ad,, y.=0'+B+x8+Ad, 25

In introducing (23) to (25) into the strain energy integral we shall assume that the origin
of the x, y system of axes is at the centroid of the cross section, that is we stipulate the
relations [(x, y)E dS = 0. Furthermore, we shall assume that ¢ is the warping function for St.
Venant torsion of a homogeneous beam with the same cross section as the given beam, i.e. we
shall assume that ¢ is determined through the relations V2¢ =0, [(¢, —y, ¢, +x)dS=(0,0),

(-y+t¢,)dy—(x+4¢,)dx =0 along the boundary f = 0 of the cross section, we shall set as an
abbreviation

D= [ (4i+4%) 45 = [ (6.~ 16,45, (26a)

and we shall stipulate, as we may, that {Ed dS=0. To be consistent with our choice of ¢ we
furthermore assume in what follows that G = const. With this we now obtain as expression for
the approximation I; to the functional I; in eqn (11)

i= % f (Se(wiy+ Lu(@'} + L,(B'Y:+ 2Uya’ B + TV + 2Tsa'A' + 2T, A"
+Gl(u' +a)+ (' + B8P —2u'+ a)e'fy dS+2(v' + ,B)e'fx ds

+ 1,02+ DA? ~2DA@")} dz - PU - QV - T8, 27)
where U= u(L), V=19(L), 8=8(L), and

L= j (2 +y)dS, ([,TwT,)= j (1, x, y)$E dS,

(SEo Ixx9 Ixya Iyy) = f(lv xzs XY, yz)E ds (26b)

Inasmuch as we are concerned with approximate rather than exact results, we shall now
further assume that translational deflections due to transverse shear may be neglected and that
the entire transverse shear strain energy is that due to twisting. Considering the form of (27) the
desired reduction will be accomplished upon introducing the additional constraint relations

a=—u', B=—v, A=4. (28)

Anticipating furthermore the result wy =0, we will then have in place of eqn (27)

fd - % I{Ixx(u”)z'{' I,y(v")2+ 21,,u"v"+ F(on)z _ ZF,O"II” - zryor:vn+ C(O:)z} dz - ﬁU _ GV‘ f@,
29)
with C = G(I, — D) being the conventional St. Venant torsional stiffness factor.

In evaluating the variational equation 81, =0 we take account of the constraint boundary
conditions u(0) = »(0) = 8(0) = 1'(0) = 8'(0) = 0. The corresponding six conditions for the loaded
end of the beams are the Euler boundary conditions

Lu"+L,o"-T,8"=0, Lu"+ILo"~T8"=-P
Lu"+Lyw"-T,0"=0, [ u"+Ip"-T,8"=-Q (30)
rw+Tp"+7¢"=0, Tu"-Tw"+T0"-Co=-T,
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for z = L, with the Euler differential equations being
Lau"™ + LoV -T,0V =0,
Lyu" + L™ -T,0" =0, (32)
TV -TwV+re"v-Co"=0.

In order to solve the problem as stated, we begin by obtaining from (31) the transformed
differential equations

Ku" = (D, ~T,L,)8", Kv" = (Tl ~Tily)8", (2
I6"v~Co"=0, (33)

where
K=1IL,,-1, Ty=T-T2L,~2I L, +T2)IK, (34)

and from (30) the transformed constraint boundary conditions

u"=0, Ku"=-I,P+I,Q+(,I,~I,T,)6"
- 39
v"=0, Kv"=-I,Q+I,P+.l,~I,T,)8"

9= 0, F*O"' —Col =- T - (Iyyrx - Ixyry)(ﬁ/K) - (Ixny - Ixny)(é/K)v (36)
for z=L.

Equations (33) and (36), in conjunction with the conditions 8(0) = 8'(0) = 0, give as expres-
sion for 6,

0()__[ I‘I,, F)IJP_,_I‘,I,Q IZX)'Q][L sinh AL —sinh A(L — Z)],A C

L1, - I, Lol — AL cosh AL T.
(37
Having 8 as in (37), we find 4 and v from eqns (32) and (35) in the form
u(z) = ——“—_012( )+r—'”—r—*§‘i 0(2),
Ll,-1 L, 1T
(38)

v(z)= 1 1 —I’ (_'2_3)+ 1, - 5 002,

X)’

We now use eqns (37) and (38) in order to obtain the values of ®=60(L). U= u(L).
V =1wu(L) in terms of P, Q, T, so as to obtain from eqns (24), as approximate expressions for
flexibility coefficients

Cor

L/, tanhAL LIy~ Dl, () tahAL
(-2 ) Cor=CT1.0,-T, s )

L L (T, -T L\ _tanhAL)
Cor =3 InIy,—I,7,+f( InI,,—I,,) (-"30)

(39

etc. Introduction of these expressions into the defining relations (7) for the coordinates of the
center of shear and of twist then give as approximations for these coordinates

_ _LhL,-T I Y r1
Ys=yr=Tpr s XTI =S (40)

I-\'X yy

S8 Vol. 15, No. 1D
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We note that in the event that the x, y-axes in the cross section are principal elastic axes we
have I, =0, and eqn (40) reduces to the simplified form x, = -T'/I,,, y, =T /I,,. For the case
of a constant modulus E, these latter formulas agree with the results previously obtained in the
classical Weber-Trefftz considerations, as well as with our earlier approximate results which
followed from a determination of flexibility coefficients through use of the principal of
minimum complementary energy in conjunction with approximations for stresses as given by
the St. Venant theory of torsion and flexure[1].

An interesting special case of the above is the case of a solid circular cross section for
which ¢ = 0, throughout. We then have that the location of the shear center coincides with the
elastic centroid of the cross section, for all possible variations of E, as long as it is assumed that
G does not vary, This resuit should be compared with the well-known result for a uniform
semi-circular cross section which may be interpreted as the case of a complete circular cross
section with vanishing E and G over one-half of the section. For this case we have as the
distance of the centroid from the straight portion of the cross sectional boundary curve
x. =4af3m ~0.42a, while at the same time the distance of the shear center is given by
x; = 8al57 = 0.51a, with the difference in assumptions concerning the distribution of G for the
two cases evidently being responsible for a significant effect on the location of the center of
shear and of twist.

APPROXIMATE DETERMINATION OF STIFFNESS COEFFICIENTS THROUGH
USE OF MINIMUM COMPLEMENTARY ENERGY PRINCIPLE
We now consider the use of the variational equation 81, = 0 with I, given in eqn (11a), with
oy = 0, = 1., = 0, and with complementary energy density

B=:(0cYE+1}G+12G) 41

| —

where o=0, 1, =7, T, =1y,

We have previously considered ‘the application of this principle, for the case of cross
sections with the x-axis an axis of symmetry, and with E independent of x and y[1], on the
basis of stipulating a St. Venant distribution

Iyo = EQ(L - 2)y, (42)
= QU+ X‘y) + T'/’,yv Ty = Q(ty —Xx)— T« 43)

with y and ¢ as stress functions, with ¢, and ¢, as particular solutions of
Iyy(tx,x + ty.y) - E)’ = 0; (44)

and with y, ¢, Q and T to be determined by the variational equation in conjunction with the
boundary condition 7, dy — 7, dx = 0 along f(x, y)=0.

It was found in[1], with the help of transformations of some complexity, that the result so
obtained, comes out to be x, = x, = —T,/I,, and an analogous outcome may be anticipated for
the problem without an axis of symmetry, as long as the analysis is restricted by the assumption
that E is independent of x and y.

In what follows we consider the derivation of a different approximate resuit, of independent
interest and—insofar as our subsequent bound calculations are concerned—associated with
slightly better results than would follow from the use of an equation equivalent to (42).

Our starting assumption is now, in place of eqn (42), the relation

o =(L—2)(7x t7yy) (45)

where, as in (43), 7, and 7, are independent of z and subject to the constraint boundary
condition

fx,y)=0; r,dy—7,dx=0. (46)
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An introduction of (45) and (46) into-(41) and (11a) leaves, upon carrying out the integration
with respect to z, the approximate energy expression

L 7 - y8 7 + x8 L 3 L 2, 2
L=”[(U-y8)r,+(v+ xe)Ty"gE(‘Tx.x“’Tyvy) —55 )} dx dy. @n

The variational equation 8I, =0, with the stipulation that &7, dy — &r, dx =0 for f =0, has as
Euler equations two differential equations for 7, and 7, of the form

j_r_,i___i'._,f(fm+f,.,,) - ff-y§
X

G 3 E L

- (48)
7 L (Tm+7” _V+x8
G 3 E J, L

Equations (48) may be simplified by deducing from them the relation

&) -®) -2 )

which, in turn, implies as expressions for r, and 7, in terms of an arbitrary function ¢(x, y),
7.=G(¢,.~8y/L), 1,=Gl¢,+0OxL) (50)

Introduction of eqns (50) into (48) then gives further

-

(e fLEpn
6, - _I§E ((G«ﬁ.xn ; (Gm),x)iy _ _;:{ N %j (xG = ny)'y %

While it is possible to continue the analysis for variable G, the results of not doing this
become sufficiently simpler to justify a restriction from here on to the case G = const. With this
restriction, and with observation of the condition [E¢ dS = 0, we readily obtain from (51),as a
second order differential equantion for ¢,

¢ ~(GLY3E)W*¢ = Ux/L + VylL. (52)

Equation (52) differs significantly from the corresponding equation for the theory of torsion
and flexure in accordance with St. Venant by the appearance of the first term on the left. We
note that for slender beams, with representative cross sectional dimension a < L this term will
be small compared to the second term, of relative order Ea*/GL?, and that considering the form
of the differential equation, we may take account of this term by an iterative procedure. The
physical reason for the occurrence of the first term in (52) is evidently the stipulation of a
condition of no cross-sectional warping at the fixed end of the beam. While this condition is
disregarded in the St. Venant formulation, it is taken account of, approximately, in the present
approximate solution through use of the principle of minimum complementary energy.

In order to obtain approximate expressions for flexibility coefficients we now consider the
solution of (52) to consist of three parts,

¢ =0¢JL+(UsJL+ Vo,/L)IG (53)

with the functions ¢, ¢., ¢, subject to the differential equations.

(v2 - éﬁ )(éﬁ ¢m ¢u) = éiEf (03 X, ,V), (54)
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and to the boundary conditions

f=0;  @o.cdy— ¢y, dx=ydy+xdx (55a)
and

f = 0; (¢u,xs ¢u.x) dy - (¢u.ya ¢v.y) dx =0. (55b)

With ¢, ¢, and ¢, determined through eqns (54) and (55), we then have as expressions for
cross sectional forces P, Q and torque T, on the basis of eqns (2) and (50),

PL=G® f (os—y)dS+ U f Gu dS+V f é... S, (56a)

with a corresponding expression for Q, and

TL=G® [ (xoy — o + X2+ y)dS+ T f (Xuy ~ o) dS + V f (XBuy — ybes) AS.
(56b)

A comparison of eqns (56) with eqns (3) gives as approximate expressions for stiffness
coefficients

KPU = L_lf(tu.x dSy KPV = L_lf‘bv.x dS,

Kpe = GL_'J'(ng,x -y)ds,. ...
(57
Ky = L‘If(x(ﬁu.y -yd,)dS,. ...

Kre=GL™ ] (¥ay — Yebay, + X+ ) dS.

STIFFNESS COEFFICIENTS EXPRESSED IN TERMS OF WARPING FUNCTION
FOR ST. VENANT TORSION
It is convenient to designate the warping function for St. Venant torsion within the present
context by ¢, with this function being the solution of the boundary value problem.

V" =0; (¢oxdy—o§) dx)y = (xdx+ydy. (58)
We then havet
[68-nas= [@%+xds=0, 59)
and
f (xb$) — ypox+x*+y)dS=1,-D=C. (60)

We note, specifically, on the basis of eqns (59) that ¢, is associated with vanishing values of
the coefficients Kpe and Kge and that therefore eqn (58) represents an inadequate ap-
proximation to the contents of eqns (54) and (55) insofar as the determinations of ¢, is
concerned. We resolve this difficulty by considering the improved approximation

@0 = $s0 + ¢, (61)

tSee for example, Love's Treatise, 4th Edn, pp. 311-313 (1934).
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with ¢,” determined from the relations

V" ‘”“"'i @, (#5xdy— @) dx), =0. (62)
We now obtain, upon observation of (62),
K — GL—! [43] = G (4] (£} 3E 1] .
pe = boxdS = 5 (xox) x + (xd5,) G2 xdg  |dS
x($6k dy - 62} dx) ds -—137 J' Ex¢"dS = {% f Ex¢®dS, (63a)
with a corresponding relation

Koo=~3L" f Eyé® dS, (63b)

and with Krg given, on the basis of (60) and (57), by
Kre=GL™'C. (63c)

In evaluating the remaining stiffness coefficients, we may use the approximations ¢, = ¢,
and ¢, = ¢,%, with the boundary conditions (55b) and the differential equations V¥4, ¢,”) =
— EL™¥x, y). With this we obtain

o= L [2d8 = L7 {060 + (88, + 3EL 731 dS
=L fx(qsg"; dy - 6@ dx)+3L" f Ex?ds =30 [ Extds, (64a)
and, analogously,
Kpy=Kou =3L" j Euds,  Kov=3L7[Eyds (64b)

Evidently, these results are such that the effect of transverse shear deformation is not included,
and it is apparent that the calculations including this effect will depend on a consideration of
functions ¢.”, ¢, in approximations ¢, = ¢, + ¢, etc. with V’¢..” = — 3E/GL%)¢,?, etc.

It remains now to evaluate Ky and Kyv, in such a way as to express these quantities. in
terms of integrals involving the function ¢4, if possible. This is accomplished as follows. We
now use, in the defining relation

Ky =L" [ 60, - yo ) dS, (65)

Green’s theorem, involving ¢, and ¢, and appropriate relations satisfied by these functions,
in the form

[@202+ 6269 d5 = §o:62 dy - 6, 0~ [8:726,0 a5 =31 Erg® s
(66)

In order to see that the Lh.s. of (66) is in fact what we wish to have, in place of the r.h.s. in (65),
we now make use, in place of ¢,7, of the associated torsion stress function ¥, defined by

YO =90 —y and ¥ =-¢P, ~x, and therewith by V%@ = -2 and (¥ dy + ¥@dx), =
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We then have

[60:62+686%) a5 = [0+ ¥DB% - x+ YD1 dS
f(y¢‘°’ $0)dS+ f(w‘°’¢‘°’~\w2’¢‘£’y)ds. 67

A second application of Green's theorem, now to the second integral on the right, and
observation of the properties of ¥ shows that this integral vanishes. Therewith, and with (66)
and (65), we then have as expression for Ky in terms of ¢4,

Kpy = 3L f Ex¢®dS. (68a)
An analogous reduction gives
Kpy=—3L" f Eyg:® dS. (68b)

We note from (68) and (63) that our stiffness coefficients do satisfy, as they should, the
symmetry relations Kry = Kpe and Kry = Koe, and we also note that we have previously used
a similar transformation as in going from (65) to (68a), in expressing the approximate value for
xs = xy in[1] for cross sections symmetric about the x-axis in terms of St. Venant’s torsional
warping function.

Having eqns (60), (63), (64) and (68) for stiffness coeflicients, we now see from eqns (8) for
the coordinates of the centers of twist and of shear in terms of these coefficients, in conjunction
with the defining relations (26), that upon identifying s ‘9 with the function ¢ in (26) the present
approximate analysis by means of the principle of minimum complementary energy does in fact
lead to the same eqns (40) for the location of the centers as obtained through use of the
principle of minimum potential energy. It is, however, worth noting in this connection that
while in the complementary energy calculations the function ¢, appears as a logical
consequence of the analysis, it’s corresponding appearance in the potential energy calculations
depends on a fortuitous ad hoc assumption in the displacement approximation eqn (21), and
that no agreement between the two types of results would have occurred if instead of defining ¢
in eqn (20) as St Venant's torsional warping function some other definition had been used.

SOME EXPLICIT BOUNDS FOR INFLUENCE COEFFICIENTS

A return to our consideration of bound relations in eqns (17){19) indicates that the set of
approximate flexibility coefficients C, in eqns (37)~(39), is in fact also a set of lower bound
coefficients C*. In this connection, we particularly note the factor 1—(AL)™" tanh AL in eqns
(39) which makes these coefficients smaller than they would be without this factor.

Furthermore, we may utilize the analysis is eqns (20)-(38) for the purpose of solving the
analogous problem, with U = U, vV = V, 8 =8 as constraint conditions for z = L, instead of the
conditions P = P, Q= Q, T = T, and with I, in (11b) replaced by I'} in (12), in such a way that
the values of P, Q, T which occur in 2% = UP + VQ+ QT are the same combinations of
loaded-end values of derivatives of u, v, # as occur in the expressions for P, Q, T in eqns (30).
It follows from this that the upper bound stiffness coefficients KV in egns (15a) are in fact the
elements of a matrix KV which is the inverse of the matrix C* which is implied by eqns
(37)-(39).

Having thus obtained an upper bound quadratic form for the coefficients K of the matrix K,
in accordance with eqns (15a) and (13), we next observe that our analysis in eqns (45)-(57) in of
such nature as to make the elements K in eqns (57) effectively lower bound coefficients K~, in
accordance with eqns (15b) and (13). Evidently, eqns (53)~(57) no more than enable us to
calculate these coeflicients K*. However, considering the form of the differential eqn (52) and
the order of magnitude considerations leading from (54) to (58), (61), (62) and (64), we have that
the explicit approximations for the coefficients K in eqns (63), (64) and (68) are in fact the
values of the lower bound coefficients K-, except for additive terms of relative order (a/LY.
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We may associate this conclusion, with another one which will result from a consideration
of the upper bound coefficients KU obtained by inversion of the matrix C*. This complemen-
tary conclusion is that the upper bound coefficients KU obtained in this manner also agree with
the approximate coefficients in eqns (63), (64) and (68), except for terms of relative order (a/LY.
This being the case it is then possible to state that the approximate values of the coefficients K
in (63), (64) and (68) are in agreement with the exact values, except for terms of relative order
(a/L)y% It follows then further that eqns (40) for the coordinates of the centers of twist and of
shear represent the location of these centers—as defined by eqns (5) and (6), in association with
the described mixed boundary value problem in three-dimensional linear elasticity theory—
exactly, except for terms of relative order (a/L)’. We may, if we wish, obtain improved bounds
K*, including terms of relative order (a/L)’, by extending the calculations based on eqns
(53)-(57) to the extent of determining, by iteration, the functions @s” + ¢ "+ &>, 6.0+
6.7, + ¢,". We may also obtain improved bounds KV by carrying out the analysis based
on the displacement approximations (20) without imposing the constraint relations (28). In
comtemplating such a program it must, however, be born in mind that the present analysis is
based on the assumption of a medium for which the axial stress o, results in no lateral
contraction effects in x, y-planes. Consideration of this lateral contraction effect would mean
greatly increased complexity of the calculations leading to the values KY. Such calculations
may be expected to leave the first-approximation bound results unchanged, while at the same
time being responsible for second-approximation bound results involving additional terms of
relative order afL as well as of order (a/L)>.
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